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1 Introduction
My internship revolves around the concept of BCI algebra, introduced by Moses Schönfinkel in the
1920s with his work on combinatory logic, and the related concept of linear λ-calculus (see [Hin97]).
BCI algebras have the particularity of having basic combinators that do not allow for deletion or
duplication of the objects they are applied to. They are also linked with Girard’s geometry of
interactions, as outlined in [AHS02]. Reversible computation, a model of computation in which
data is linear, and as such cannot be deleted nor duplicated [JS12], was also supposed to be a
central part of my internship, as it can also be linked with BCI algebras [Abr05]. In relation to this
model, there are type systems that allow for the tracking of the use of resources [Atk18]. Category
theory can be used to model the computing power of BCI algebras, using the work from [Hos07]
with definitions from [ML71], as well as reversible computation [CS21].

My original subject was to create a reversible and dependently typed programming language
using BCI algebras. As it quickly appeared that BCI algebras were too powerful for this use, I
instead studied their expressivity. Since BCI combinators are very weak, as stated earlier, it is
interesting to see what limit they have, if that limit is not reversible computation, as we thought
at the beginning of my internship.

As writing terms with BCI combinators is very tedious and error prone, I started by implement-
ing them in Coq, and added linear λ-calculus to make the definition of new objects easier. Although
my first try proved quite difficult, a second approach to this problem allowed me to make a clean
encoding for linear λ-calculus. Unfortunately, I failed to prove the correctness of my main function
in both cases, but I was able to prove the correctness of the outputted objects independently.

I then tried to add booleans, first as a primitive, when trying to obtain a reversible model, and
then by encoding them with the BCI combinators, which turned out to be more powerful than the
few axioms added in the first attempt, while also being more general. I used encodings for linear
λ-calculus from [Mai04], which are variations of the usual encodings for standard λ-calculus, and
then used the Coq function previously defined to turn them into objects of a BCI algebra.

As these encoded booleans have interesting properties, I studied them from a category theory
point of view to obtain a lower bound on the computing power of the model.

2 Preliminary results and definitions
The definitions and results of 2.1 and 2.2 come from [Hos07].

2.1 BCI algebra
Definition 1 (BCI algebra). A BCI algebra A is a pair (A, ·) with A a set and · a left-associative
total binary application.
The set A contains three objects B, C and I, satisfying

B · x · y · z = x · (y · z)
C · x · y · z = x · z · y
I · x = x

3



Example. We can encode a term behaving in the same way as pairs in λ-calculus: some Pair ∈ A
such that for all x, y, z ∈ A, Pair · x · y · z = z · x · y

B · C · (C · I) · x · y · z
= C · (C · I · x) · y · z
= C · I · x · z · y
= I · z · x · y
= z · x · y

Definition 2 (Polynomial over A). A polynomial over A is an expression generated by variables,
elements of A and applications.

In order to define useful elements of A more easily, we can define terms like in linear λ-calculus,
where each variable appears exactly once.

Proposition 1. If M is a polynomial over some BCI algebra (A, ·) containing a variable x appear-
ing only once, then there exists a polynomial λ∗x.M with the same free variables as M except x,
satisfying for all a ∈ A, (λ∗x.M) · a = M [a/x].

Proof. Since it contains x as a free variable, M is either x or N ·N ′ for some polynomials N and
N ′. We can define λ∗x.M in the following way:

λ∗x.x = I

λ∗x.N ·N ′ =
{
C · (λ∗x.N) ·N ′ if x is a free variable in N
B ·N · (λ∗x.N ′) if x is a free variable in N ′

It is well defined since N and N ′ are strictly smaller than M . It satisfies (λ∗x.M) · a = M [a/x] for
a ∈ A:

• it is direct if M is x,

• if M = N ·N ′ and x is in N , then

C · (λ∗x.N) ·N ′ · a
=(λ∗x.N) · a ·N ′

=N [a/x] ·N ′ by induction hypothesis
=M [a/x] since x cannot appear in N ′

• if x is in N ′, B ·N · (λ∗x.N ′) · a = N · ((λ∗x.N ′) · a), which gives us the right result, similarly
to the previous case.

2.2 Category of assemblies
A realisability relation between a BCI algebra and a set describes which elements of the algebra
implement a given element of the set.

Definition 3 (Realisability relation). A realisability relation for a BCI algebra A and a set X is
a subset of A×X.
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This can be extended to functions.

Definition 4 (Realisable function). Given two sets X and Y and their realisability relations �X
and �Y in respect to a BCI algebra A, a function f : X → Y is realisable if there exists a realiser
r ∈ A such that for all x ∈ X and a ∈ A such that a �X x,

r · a �Y f(x)

From this we can define a category based on the category of sets:

Definition 5 (Category of assemblies). Given a BCI algebra A, we can define Asm(A), the category
of assemblies of A.

• Its objects are pairs (X,�X) with X a set and �X∈ A×X the realisability relation of X.

• Its morphisms from (X,�X) to (Y,�Y ) are the realisable maps from X to Y .

We will prove that this category is symmetric monoidal closed. Here is the definition of a sym-
metric monoidal category, the idea behind being that the category is equipped with an associative
and commutative tensor product with a unit object.

Definition 6 (Symmetric monoidal cateogry). A symmetric monoidal category is a category C
equipped with a tensor product, which is a functor ⊗ : C × C → C and a unit object I.

It also requires some natural isomorphisms:

• associator αx,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z)

• left unitor λx : I ⊗ x→ x

• right unitor ρx : x⊗ I → x

• symmetry σx,y : x⊗ y → y ⊗ x

With the requirement that the following diagrams commute.

((w ⊗ x)⊗ y)⊗ z (w ⊗ x)⊗ (y ⊗ z) w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z w ⊗ ((x⊗ y)⊗ z)

αw⊗x,y,z

αw,x,y⊗1z

αw,x,y⊗z

αw,x⊗y,z

1w⊗αx,y,z

(x⊗ I)⊗ y x⊗ (I ⊗ y)

x⊗ y
ρx⊗1y

αx,I,y

1x⊗λy

(x⊗ y)⊗ z x⊗ (y ⊗ z) (y ⊗ z)⊗ x

(y ⊗ x)⊗ z y ⊗ (x⊗ z) y ⊗ (z ⊗ x)

αx,y,z

σx,y⊗1z

σx,y⊗z

αy,z,x

αy,x,z 1y⊗σx,z

Finally, we must have
σy,x ◦ σx,y = 1x⊗y
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Now we define what it means for it to be closed: the general idea is that for any objects x and y,
there is an object corresponding to the set of morphisms between x and y. In the case of symmetric
monoidal categories, it can equivalently be defined as the existence of currying.

Definition 7 (Symmetric closed monoidal category). A symmetric monoidal cateogry C is closed if
for all object x, y and z, there is an isomorphism between HomC(x⊗ y, z) and HomC(x, hom(y, z)).

And we can now express the main proposition.

Proposition 2. Asm(A) is symmetric monoidal closed.

Proof. This is true for the category of sets with the cartesian product, so we only have to take
realisability into account.

The tensor product becomes

⊗ : (X,�X), (Y,�Y ) 7→ (X × Y,�X×Y )

with �X×Y = {(Pair · a · b, (x, y))|a �X x, b �Y y}, where Pair is the object defined in the previous
example.

The unit object is ({?}, (I, ?)) (a canonical singleton, which only object is realised by I).
All the required isomorphisms exist for sets, and can be extended to Asm(A) by applying it

to the left member of the pair and taking the corresponding realisability relation thanks to the
previous definition of �X×Y . However, we need to prove that they are realisable.

• α: if we have (X,�X), (Y,�Y ) and (Z,�Z) three objects, x, y and z and a, b and c such that
a �X x, b �Y y and c �Z z, then (Pair · a · (Pair · b · c)) �X×(Y×Z) (x, (y, z)).

Pair · a · (Pair · b · c) · (λ∗a m. m · (λ∗b c x. x · a · b · c)) · (λ∗a b c x. x · (λ∗y.y · a · b) · c)
=(λ∗x. x · a · b · c) · (λ∗a b c x. x · (λ∗y.y · a · b) · c)
=λ∗x.x · (λ∗y.y · a · b) · c
=Pair · (Pair · a · b) · c

Hence α is realised by

λ∗e. e · (λ∗a m. m · (λ∗b c x. x · a · b · c)) · (λ∗a b c x. x · (λ∗y.y · a · b) · c)

• λ is realised by λ∗x. x · (λ∗a b. b · a)

• ρ is realised by λ∗x. x · (λ∗a b. a · b)

• σ is realised by λ∗x. x · (λ∗a b y. y · b · a)

As for closure, we need to prove that for all objects a, b and c, there is a natural bijection
between Hom(a⊗ b, c) and Hom(a,hom(b, c)).

If we have a morphism f from (X × Y,�X×Y ) to (Z,�Z) then we have a morphism g from
(X,�X) to (Y ( Z,�Y(Z), with Y ( Z the set of realisable morphisms from Y to Z, and
�Y(Z= {(a, s) ∈ A × (Y ( Z)|a realises s}. It associates to each element x of X a function hx
from Y to Z such that for all y ∈ Y , hx(y) = f(x, y).
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We need to prove that g and hx are realisable. We name a a realiser of x, b a realiser of y and
c a realiser of f(x, y). If f is realised by r, we have r · (Pair · a · b) = c, hence hx is realised by
λ∗b. r · (Pair · a · b) and g is realised by λ∗a b. r · (Pair · a · b).

The other way around, if we have a morphism g as described in the previous case, we can
associate it to the morphism f such that f(x, y) = g(x)(y). if g is realised by r and g(x) by r′, then
f is realised by r′ · r.

3 Implementing BCI algebras in Coq
We can define BCI algebras as a record type, with the necessary objects and properties.

Record BCI :=
{Carrier: Type;
App: Carrier -> Carrier -> Carrier

where "A @ B" := (App A B);
B: Carrier;
C: Carrier;
I: Carrier;
B_ax: forall x y z: Carrier, B @ x @ y @ z = x @ (y @ z);
C_ax: forall x y z: Carrier, C @ x @ y @ z = x @ z @ y;
I_ax: forall x: Carrier, I @ x = x;
}.

Note: the names of the elements of the record are simplified. These are different in the file, as
they require a BCI as an argument to be used, then the use of notations to obtain clear names in
the proofs. For instance, B is named B_combinator and a Parameter bci: BCI is used to define
Notation "'B'" := (B_combinator bci).

3.1 Implementing λ∗

We now want to define a lambda_s function, computing the Carrier object corresponding to a λ∗
term. I took the encoding of λ-calculus from [BHKM12] as a model for the beginning.

Implementing λ∗ requires a type Exp for polynomials, with free variables. It also requires a way
to go from polynomials back to a Carrier.

This type will be dependent on a list of free variables. The type of free variables is a variable
Ty: Type, with the environment being defined as

Definition Env := list Ty.

The Exp type will have to satisfy the two following properties:

• The order of variables must not matter: Exp E1 = Exp E2 if E1 and E2 are equal up to
permutation. Otherwise, if we were to define a function of the form

Definition Double_bind: _ -> Exp [] := fun e => lambda_s x (lambda_s y e)

(where lambda_s is simplified, it will require more arguments), e would either be typed
Exp [x; y] or Exp [y; x], hence the need for these two types to contain all the terms with
two free variables x and y, appearing in any order.
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• If the term is an application N · N ′, there must be a way to split the list into two lists
containing the free variables of N and N ′.

The Exp type should look like this:

Inductive Exp: Env -> Type :=
| CAR: Carrier -> Exp []
| VAR: forall (v: Ty), Exp [v]
| APP: forall {E E_fun E_arg}, Exp E_fun -> Exp E_arg -> ... -> Exp E

The VAR and CAR cases are straightforward, and satisfy the first property. The difficult part is the
missing type in the APP case. How can we link E_fun, E_arg and E?

Using E = E_fun ++ E_arg is not enough, as it would break the first property: for example,
x · y could only be encoded by APP (VAR x) (VAR y) eq_refl, which would always be typed
Exp [x; y].

3.2 First attempt: using permutations
Using permutations allows the elements of E to be reordered into E_fun ++ E_arg.

3.2.1 Permutations

Permutations are already present in the standard library, however they are defined as a Prop, which
means that they only encode the equivalence relation “equal up to permutation”, and Coq doesn’t
remember the underlying permutation. I had to rewrite part of that library, changing this Prop
into a Type, which allowed me to follow the elements of the lists through permutations.

Here is the encoding for permutations:

Inductive Permutation: list A -> list A -> Type :=
| perm_nil: Permutation [] []
| perm_skip x l l': Permutation l l' -> Permutation (x :: l) (x :: l')
| perm_swap x y l: Permutation (y :: x :: l) (x :: y :: l)
| perm_trans l l' l'': Permutation l l' -> Permutation l' l'' -> Permutation l l''.

This allows for the encoding of permutations as compositions of transpositions of adjacent items.
perm_nil is the base case, perm_skip encodes a fixed point and perm_swap encodes a transposition
of adjacent elements. Finally, perm_trans is used for composition.

We will use the notation l1 >< l2 for the type of permutations between l1 and l2.
The APP constructor of Exp is now

| APP: forall {E E_fun E_arg}, Exp E_fun -> Exp E_arg -> E >< E_fun ++ E_arg
-> Exp E

3.2.2 The lambda_s function

The lambda_s function takes as arguments the name of the variable to be bound, an environment
and an expression in that environment, followed by a proof that the variable is in the environment.
It returns an expression in the environment stripped of the bound variable.
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Definition lambda_s (v: Ty) E (e: Exp E):
forall E1 E2, E >< E1 ++ v :: E2 -> Exp (E1 ++ E2).

induction e.
...

The induction cases are the same as the ones in the proof of Proposition 1.
The VAR case of the induction is just I_exp, since the variable can only be the one to be bound.
The CAR case is absurd, since it gives an expression with an empty environment.
The APP case requires more work, which will be detailed in the following section.

3.2.3 The APP case

The problem is that we have to follow v to find out whether it belongs in E_fun or in E_arg. In
order to do that, we first define a type holding this information:

Inductive APP_split: Ty -> Env -> Env -> Env -> Env -> Type :=
| head_split: forall {x: Ty} {E1 E2 E_fun E_arg E_fun1 E_fun2: Env},

E_fun >< E_fun1 ++ x :: E_fun2
-> E_fun1 ++ E_fun2 ++ E_arg >< E1 ++ E2
-> APP_split x E1 E2 E_fun E_arg

| tail_split: forall {x: Ty} {E1 E2 E_fun E_arg E_arg1 E_arg2: Env},
E_arg >< E_arg1 ++ x :: E_arg2
-> E_fun ++ E_arg1 ++ E_arg2 >< E1 ++ E2
-> APP_split x E1 E2 E_fun E_arg.

head_split means the variable is in E_exp and tail_split means the variable is in E_fun. In
both cases, we provide a permutation of the related list showing that the variable is present, as well
as a new global permutation without the variable.

We must then obtain objects of that type to use them in lambda_s. The following function does
exactly that, by induction on the permutation it takes as an argument.

Definition APP_splitter: forall (x: Ty) (E1 E2 E_fun E_arg: Env),
E_fun ++ E_arg >< E1 ++ x :: E2 -> APP_split x E1 E2 E_fun E_arg.

And with this element, lambda_s can be defined.

3.2.4 A major drawback

One issue with this encoding is that it is very redundant. Indeed, one could expect the type
[] >< [] to be only inhabited by perm_nil. However, with perm_trans there is an infinite number
of inhabitants, as you can always use transitivity to add more empty permutations.

This adds a layer of complexity to the proofs, which can require difficult inductions even in cases
that should be trivial.

In order to remove part of this problem, we can define an extensional equality on permutations,
which is based on the movements of the elements in the list.

In order to track the elements in the list, we will use the following type:

Inductive Contains (a: A): list A -> Type :=
| Here : forall l, Contains a (a :: l)
| Next : forall l a', Contains a l -> Contains a (a' :: l).
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Contains not only shows that an object is part of a list, but also keeps its position (the index in
the list is the amount of Next before the Here).

Then we can change these objects according to a permutation:

Lemma Permutation_contains: forall {l l': list A} {a},
l >< l' -> Contains a l -> Contains a l'.

Finally, our equality will be based on the similarity of these movements, in the following way:

Definition Permutation_eq {l1 l2: list A} (p1 p2: l1 >< l2) :=
forall (x: A) (Ct: Contains x l1),

Permutation_contains p1 Ct = Permutation_contains p2 Ct.

We can now state properties with permutations that behave like perm_nil (or any other per-
mutation), which can help to obtain easier proofs.

3.2.5 Correctness

The next step is to prove the correctness of the lambda_s function, that is the fact that it respects
(λ∗x.M) · N = M [N/x]. We need a way to express the right term of the equation, which can be
done by defining environments for free variables, and then substitute all the free variables with
their value in the environment.

Environments In order to do that, we have the following type:

Definition Bci_env E := forall v: Ty, Contains v E -> Carrier.

Contains allows Bci_env to reference each variable by its position in the environment.
We can now turn an expression into a BCI object with the following function.

Fixpoint Exp_to_BCI {E} (e: Exp E): Bci_env E -> Carrier

The proof The statement for the correctness of lambda_s is the following:

Theorem lambda_s_correctness:
forall E (e: Exp E) E1 E2 (v: Ty) (p: E >< E1 ++ v :: E2)

(x: Bci_env (E1 ++ E2)) (c: Carrier),
exists p', Permutation_eq p p' /\
Exp_to_BCI e (Bci_env_convert _ _ p' (Bci_env_insert_mid E1 E2 x v c))
= Exp_to_BCI (lambda_s v E e E1 E2 p') x @ c.

where Bci_env_convert and Bci_env_insert_mid are just used to create the environment
giving the variable a value.

The CAR and VAR cases are not a problem. However, I have not succeeded in proving the APP
case, even with the help of extensional equality and already many simplification lemmas.

The main problem is the absence of link between the input and output permutations in some
functions, which makes them appear as unrelated permutations in the proof, whereas they should
be closely related.
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3.3 Second attempt: using partitions
This idea was given to me by Conor McBride, as an alternative to permutations. We can split
directly E into E_fun and E_arg using an encoding of partitions in two lists.

3.3.1 Partitions

Here is the encoding for partitions:

Inductive Partition: list A -> list A -> list A -> Type :=
| part_nil: Partition [] [] []
| part_skipl x {l lleft lright}: Partition l lleft lright

-> Partition (x :: l) (x :: lleft) lright
| part_skipr y {l lleft lright}: Partition l lleft lright

-> Partition (y :: l) lleft (y :: lright).

part_nil is the base case, and the two others are used to send the first element of the list to be
partitionned to one of the two sublists. This encoding has the advantage of not being redundant,
unlike that for permutations.

The following notation will be used from now on:

Notation "ll <! l !> lr" := (Partition l ll lr)

We now have the following for the APP constructor:

| APP: forall E E_fun E_arg, Exp E_fun -> Exp E_arg -> E_fun <! E !> E_arg
-> Exp E

3.3.2 The lambda_s function

This representation yields a much simplified version of lambda_s:

Definition lambda_s: forall v E E', [v] <! E !> E' -> Exp E -> Exp E'.

in which we directly take the variable v out of E to obtain E'.
The base cases are similar to the previous version, however the APP case is not.

3.3.3 The APP case

In this case, we have two partitions of E:
E_fun <! E !> E_arg and [v] <! E !> E'. We can combine them to obtain a partition for E_fun,
E_arg, [v] and E':

E

!>
<!

<! !>E_fun E_arg

[v]

E'

!>
<!

!>
<!

<! !>

<! !>

E_funv

E_fun’

E_argv

E_arg’

We can then look at the partition E_funv <! [v] !> E_argv to figure out where v belongs:
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• if the partition is part_skipl v part_nil, then v is in E_fun

• else, the partition is part_skipr v part_nil, and v is in E_arg.

We can now define the lambda_s function, with much less efforts than in the previous attempt.

3.3.4 Substitution

Like in the previous case, we want a way to implement M [N/x], however this time I tried a cleaner
approach, with the following substitution function:

Lemma substitute: forall {x: Var} {EM EM' EMN EN},
[x] <! EM !> EM' -> EM' <! EMN !> EN -> Exp EM -> Exp EN -> Exp EMN.

The first partition shows that x is free in M and the second is used to show that the expression
outputted contains the free variables of M and N with the exception of x.

3.3.5 Correctness

Using substitution, we now have a more elegant expression for correctness:

Theorem lambda_s_correctness: forall v E E' E'' E''' (p1: [v] <! E !> E')
(p2: E' <! E'' !> E''')
(e1: Exp E) (e2: Exp E'''),

APP (lambda_s v p1 e1) e2 p2 = substitute p1 p2 e1 e2.

Even though this method is cleaner than the one with permutations, I still failed to prove this
theorem. This is mostly caused by some difficulties with proofs involving substitute, and since I
did this implementation at the very end of my internship, I had not enough time to look into this
problem in depth.

3.4 Comparing the two approaches
Even though my main objective when using partitions was to prove the correctness of lambda_s,
which I was not able to do, the second method has its advantages.

The main one is that it is much shorter. The file defining permutations and the lemmas about
them is about three times longer as the one for partitions. Moreover, lambda_s itself requires less
work, which reduces even more the total size of the code on the partitions side.

This is mostly due to the fact that partitions are a much more effective way to do the case split
on APP. Indeed, APP_splitter, which is very long, is replaced by the use of the - much simpler
- lemma giving the square described in section 3.3.3. When writing for example that x is in E,
writing [x] <! E !> E' is much more effective than E >< E1 ++ x :: E2, since concatenation
adds another layer of complexity. I tried to use permutations more efficiently with E >< x :: E',
but I didn’t manage to code lambda_s again using that, since it reduces the liberty given by the
presence of the two sublists E1 and E2.

4 Adding Booleans
We have no datatypes for now, so we can try to implement booleans to add one.
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4.1 As a primitive
We can define booleans as a primitive: in addition to B, C and I, A contains two elements > and
⊥. The idea when I worked on this was to extend the BCI algebra and to try to have a basis for
a reversible programming language. Since it turned out that BCI algebras were not a model of
reversible computation, this attempt could not succeed.

The booleans can be implemented in Coq as two new entries in the BCI record type, named
T_bool and F_bool. Since these two objects cannot do anything by themselves, we need more
axioms for them to be of any use.

4.1.1 If-Then-Else

In order to keep in line with the idea of reversibility, we define combinators which do not delete or
duplicate variables in their definition. Since an If-Then-Else has two branches, with only one being
used, applying the combinator to both its branches would carry the unused branch for the rest of
the computation.

We can however assume that A (the carrier set) contains for all x, y ∈ A an element ITE x y,
which is the combinator corresponding to these two branches. It will then only be applied to the
boolean.

Another thing we don’t want to do is to discard the boolean the combinator is applied to. We
can thus define the two axioms of ITE in the following way:

(ITE x y) · > = x · >

(ITE x y) · ⊥ = y · ⊥

However, in this case we cannot even define a clean negation, since the boolean given as an
argument will have to stay. However this can be fixed by integrating negation into the two axioms,
which become:

(ITE x y) · > = x · ⊥

(ITE x y) · ⊥ = y · >

With negation being defined as
Not = ITE I I

Even without the fact that this addition does not help the absence of reversibility (which will be
shown in the next subsection), having ITE take two arguments and give an object of A makes λ∗
unable to bind variables inside those arguments. I tried adapting λ∗, with the constraint of having
the same free variables in both branches, but I failed to do so, and didn’t look further when we
realised that reversibility was not achievable.

4.2 By adapting the encoding for λ-calculus
Another approach to the addition of booleans is to encode them directly with the BCI combinators.
Since booleans can be encoded in λ-calculus, we can try to make an encoding for linear λ-calculus.

Definition 8 (Booleans in λ-calculus).

• True is encoded as λxy.x.

13



• False is encoded as λxy.y.

This encoding is not linear, hence the need to adapt it. The following encodings are from
[Mai04]. All of them are defined in the exp_def file, and their correctness proofs are in bci_proof
(see appendices).

Definition 9 (Booleans in linear λ-calculus).

• > := Pair.

• ⊥ := λ∗xy.Pair · y · x.

In this encoding, booleans are like Pair, but ⊥ swaps the two arguments.

4.2.1 Discarding booleans

One problem with this encoding will arise when defining conjunction and disjunction: it will not
be possible to obtain a single boolean as the output without deleting booleans. However we can
define the following object to discard booleans, which shows that BCI algebras are not a model for
reversible computation.

Definition 10 (Eliminator for booleans). The idea is to provide the boolean with two I (which
erases the difference between True and False), which gives us Pair · I · I, and provide it with yet
another I in order to obtain I · I · I, which is equal to I.

ElimB := λ∗b.b · I · I · I

We have, as proven in the Coq file, ElimB · > = I, and the same for ⊥.

4.2.2 Boolean functions

Definition 11 (Negation). Since the difference between True and False is that False swaps the
arguments, negation is obtained by swapping the arguments:

Not := λ∗bxy.b · y · x

Definition 12 (Conjunction). The first boolean is applied to ⊥, the second boolean and the elim-
inator for booleans. The idea is that the first boolean will determine which of ⊥ and the second
boolean will be affected by the eliminator.

And := λ∗b1b2.b1 · ⊥ · b2 · ElimB

Definition 13 (Disjunction). The idea is the same as for conjunction.

Or := λ∗b1b2.b1 · b2 · > · ElimB
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4.2.3 Copying booleans

Another useful thing we can do is to duplicate booleans, that is to go from a boolean b to a Pair ·b·b.

Definition 14 (Duplicator).

CopyB =λ∗b.b · (Pair · > · >)
· (Pair · ⊥ · ⊥)
· (λ∗UV.U · (λ∗u1u2.V · (λ∗v1v2.Pair · (ElimB · v1 · u1)

· (ElimB · v2 · u2))))

If b is a boolean, it is either equal to > or to ⊥, hence the result should either be Pair · > · > or
Pair · ⊥ · ⊥. The variables U and V will hold these pairs, with b setting which variable holds which
pair. The pair contained in V is then deleted, keeping only the one in U .

5 Considering discardable and duplicable objects
The fact that one can encode objects which can be discarded and duplicated is interesting consid-
ering that in the basic equations of BCI algebras all variables are present in the same numbers on
both sides. We will look in this part at these objects in particular.

5.1 Eliminators and duplicators
We first have to define a general concept of eliminator and duplicator.

Definition 15 (Eliminator). An eliminator of an object x of a BCI algebra is an object Elim such
that

Elim · x = I

Definition 16 (Duplicator). A duplicator of an object x is an object Copy such that

Copy · x = Pair · x · x

As an example, we can use eliminators to define an If-Then-Else, as a generalisation of the
boolean And and Or.

Definition 17 (If-Then-Else). If we have an eliminator E for x and y:

ITE := λ∗bxyE.b · y · x · E

This works in the same way as And and Or, by discarding the right object, between x and y.

Lemma 1. I has a duplicator and an eliminator.

Proof. I is an eliminator for I, as I · I = I.
λ∗x.x · (Pair · I · I) is a duplicator for I:

(λ∗x.x · (Pair · I · I)) · I
=I · (Pair · I · I)
=Pair · I · I
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An interesting result is that we can get an eliminator for a pair of objects given eliminators for
the elements of the pair, and a duplicator for a pair provided we have a duplicator for each element.
The proofs in Coq are in the bci_proof files.

Lemma 2. If x and y have eliminators, then Pair · x · y has one.

Proof. if we have xelim and yelim eliminators for x and y respectively, we can apply each of them
to the right component of the pair:

λ∗p.p · (λ∗xy.(xelim · x) · (yelim · y))

Lemma 3. If x and y have duplicators, then Pair · x · y has one.

Proof. If we have xcopy and ycopy duplicators for x and y respectively, we can apply each to the
right component of the pair and then reorganise the obtained objects.

λ∗p.p · (λ∗xy.(xcopy · x)
· (λ∗x1x2.(ycopy · y)

· (λ∗y1y2.Pair · (Pair · x1 · y1)
· (Pair · x2 · y2))))

5.2 A cartesian subcategory of Asm(A)
We consider the category based on objects of Asm(A) for which there exists an eliminator and a
duplicator. To such an object (X,�X) we associate the object (X,�X , EX , DX), DX and EX being
respectively a duplicator and an eliminator for the realisers of X. The morphisms are then the ones
between the original objects of Asm(A).

5.2.1 Commutative comonoids

It is worth noting that this category corresponds to the category of commutative comonoids of
Asm(A), CComon(Asm(A)).

Definition 18 (Monoid object). A monoid object in a monoidal category (C,⊗, I) is an object M
with a multiplication µ : M ⊗M →M and a unit η : I →M such that the two following diagrams
commute:

(M ⊗M)⊗M M ⊗ (M ⊗M) M ⊗M

M ⊗M M

αM,M,M

µ⊗1M

1M⊗µ

µ

µ

I ⊗M M ⊗M M ⊗ I

M
λM

η⊗1M

µ

1M⊗η

ρM
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Where α, λ and µ are the morphisms defined in definition 6.

Definition 19 (Commutative monoid). A monoid object M in a symmetric monoidal category is
commutative if the following diagram commutes:

M ⊗M M ⊗M

M

σM,M

µ µ

Where σ is the symmetry of definition 6.

Definition 20 (Comonoid object). A comonoid object in a monoidal category C is a monoidal
object in the category Cop.

A comonoid M is thus equipped with a duplication δ : M →M ⊗M and elimination ε : M → 1.

Definition 21 (Commutative comonoid). Like in the previous definition, a commutative com-
monoid in C is a commutative monoid in Cop.

Alternatively, a comonoid M is commutative if the following diagram commutes:

M ⊗M M ⊗M

M

σM,M

δ δ

which is equivalent to the first definition.

Proposition 3. The category described earlier corresponds to CComon(Asm(A)).

Proof. It is clear from their definition that the comonoids of Asm(A) do have an eliminator and a
duplicator.

Conversely, if we have an object (X,�X , DX , EX), then

δ : X → X ×X
x 7→ (x, x)

is realised by DX and
ε : X → I

x 7→ ?

is realised by EX .
Since these two are simple functions on sets, they directly fill the required properties, including

the one for commutativity.

5.2.2 A cartesian subcategory

Lemma 4. CComon(Asm(A)) is symmetric monoidal.

Proof. The tensor product is still well defined, as lemmas 2 and 3 give us that the cartesian product
is still realisable.
Lemma 1 gives us that the unit object is also in CComon(Asm(A)).
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Proposition 4. CComon(Asm(A)) is cartesian.

Proof. Since it is symmetric monoidal, we need to show that there are two monoidal natural trans-
formations: δX : X → X ⊗X and εX : X → I such that

λX ◦ (εX ⊗ 1X) ◦ δx = 1X

ρX ◦ (1X ⊗ εX) ◦ δx = 1X
This is a result that can be found in nlab, or in the following lecture notes [HV12], along with the
definition of monoidal natural transformation.

Deletion and copy filling these requirements exist for sets, thus we only need to show that they
are realisable, which has been done in proposition 3.

5.2.3 A non linear core

Since CComon(Asm(A)) is a subcategory of Asm(A), we have at least booleans and expressions
made of pairs and booleans which can be eliminated and duplicated. This forms a core of powerful
types, in addition to the linear part corresponding to the rest of the category.

This is only a lower bound of the computing power of BCI algebras, I have for example not
determined if some morphisms could be treated the same way, wich would give a cartesian closed
category.

6 Conclusion
Although I failed to prove the correctness of my main function in Coq, which remains as a future
work, we have an encoding using partitions which is quite concise and was efficient enough for the
uses I had of it. Complexity will probably be an issue with bigger terms, but optimising Coq code
is out of my reach for now.

The exact computing power of BCI algebras remains to be determined, as well as the limitations
coming from the fact that the cartesian category is not closed in the final structure. It is still an
interesting result, as it shows that BCI algebras are powerful enough to implement types which
objects can be discarded or copied, and thus have a language with a core of powerful types.

An interesting follow-up would be to examine the relation of the structure we obtained to linear-
non-linear models [Ben95], which are models of intuitionistic linear logic with a non linear core.
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7 Appendices
7.1 Code
The Coq code is stored in the following repository, with some documentation: https://gitlab.
com/SamuelArsac/m1-internship

The code is divided into two folders:

• The code for permutations, with only the encoding of BCI algebras, the file for permutations,
and the file with the lambda_s function and some definitions to showcase its use.

• The code for partitions, with the same contents as the other one, with the addition of files
containing the definition of all objects with BCI combinators, the proofs for their correctness
and the proofs of their equality with the terms defined using lambda_s.

7.2 Meta-information
This internship was done remotely due to the sanitary conditions.

Approximate timeline of the internship:

• First month/month and a half: bibliography work.

• Next two months: implementation of BCI algebras and λ∗ in Coq and work on implementing
booleans as a primitive.

• Last month and a half: worked on boolean encodings, the cartesian subcategory and their
encoding in Coq.

• Very end of the internship: implementation of λ∗ in Coq using partitions.
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